5.2.3.2. Grid-Stat: Standard Verification of Surface Fields

Run the MET GridStat tool to compare gridded forecast data to gridded observation data over a few valid times and generate Continiuous statistics over time. (GFS:GFS:Grib)

Scientific Objective

To provide useful statistical information on the relationship between observation data in gridded format to a gridded forecast. These values can be used to assess the skill of the prediction. Statistics stored only as partial sums to save space. Stat-Analysis must be used to compute Continuous Statistics.

Datasets

Forecast: GFS
Observation: GFS
Location: All of the input data required for this use case can be found in the sample data tarball. Click here to download: https://github.com/NCAR/METplus/releases/download/v3.0/sample_data-medium_range-3.0.tgz
This tarball should be unpacked into the directory that you will set the value of INPUT_BASE. See ‘Running METplus’ section for more information.
Data Source: GFS

METplus Components

This use case utilizes the METplus GridStat wrapper to search for files that are valid at a given run time and generate a command to run the MET tool grid_stat if all required files are found.

METplus Workflow

GridStat is the only tool called in this example. It processes the following run times:

Valid: 2017-06-13 0Z
Forecast lead: 24 hour
Valid: 2017-06-13 6Z
Forecast lead: 24 hour

METplus Configuration

METplus first loads all of the configuration files found in parm/metplus_config, then it loads any configuration files passed to METplus via the command line with the -c option, i.e. -c parm/use_cases/model_applications/medium_range/GridStat_fcstGFS_obsGFS_Sfc_MultiField.conf

# Grid to Grid Anomoly Example

[config]
# time looping - options are INIT, VALID, RETRO, and REALTIME
LOOP_BY = VALID

# Format of VALID_BEG and VALID_END
VALID_TIME_FMT = %Y%m%d%H

# Start time for METplus run
VALID_BEG = 2017061300

# End time for METplus run
VALID_END = 2017061306

# Increment between METplus runs in seconds. Must be >= 60
VALID_INCREMENT = 21600

# Options are times, processes
# times = run all items in the PROCESS_LIST for a single initialization
# time, then repeat until all times have been evaluated.
# processes = run each item in the PROCESS_LIST for all times
#   specified, then repeat for the next item in the PROCESS_LIST.
LOOP_ORDER = times

# List of applications to run
PROCESS_LIST = GridStat

# list of variables to compare
BOTH_VAR1_NAME = TMP
FCST_VAR1_OPTIONS = GRIB_lvl_typ = 105;
BOTH_VAR1_LEVELS = Z2

BOTH_VAR2_NAME = RH
FCST_VAR2_OPTIONS = GRIB_lvl_typ = 105;
BOTH_VAR2_LEVELS = Z2

BOTH_VAR3_NAME = SPFH
FCST_VAR3_OPTIONS = GRIB_lvl_typ = 105;
BOTH_VAR3_LEVELS = Z2

BOTH_VAR4_NAME = HPBL
FCST_VAR4_OPTIONS = GRIB_lvl_typ = 01;
BOTH_VAR4_LEVELS = L0

BOTH_VAR5_NAME = PRES
FCST_VAR5_OPTIONS = GRIB_lvl_typ = 01;
BOTH_VAR5_LEVELS = Z0

BOTH_VAR6_NAME = PRMSL
FCST_VAR6_OPTIONS = GRIB_lvl_typ = 102;
BOTH_VAR6_LEVELS = L0

BOTH_VAR7_NAME = TMP
FCST_VAR7_OPTIONS = GRIB_lvl_typ = 01;
BOTH_VAR7_LEVELS = Z0

BOTH_VAR8_NAME = UGRD
FCST_VAR8_OPTIONS = GRIB_lvl_typ = 105;
BOTH_VAR8_LEVELS = Z10

BOTH_VAR9_NAME = VGRD
FCST_VAR9_OPTIONS = GRIB_lvl_typ = 105;
BOTH_VAR9_LEVELS = Z10

BOTH_VAR10_NAME = TSOIL
FCST_VAR10_OPTIONS = GRIB_lvl_typ = 112;
BOTH_VAR10_LEVELS = Z0-10

BOTH_VAR11_NAME = SOILW
FCST_VAR11_OPTIONS = GRIB_lvl_typ = 112;
BOTH_VAR11_LEVELS = Z0-10

BOTH_VAR12_NAME = WEASD
FCST_VAR12_OPTIONS = GRIB_lvl_typ = 01;
BOTH_VAR12_LEVELS = Z0

BOTH_VAR13_NAME = CAPE
FCST_VAR13_OPTIONS = GRIB_lvl_typ = 01;
BOTH_VAR13_LEVELS = Z0

BOTH_VAR14_NAME = CWAT
FCST_VAR14_OPTIONS = GRIB_lvl_typ = 200;
BOTH_VAR14_LEVELS = L0

BOTH_VAR15_NAME = PWAT
FCST_VAR15_OPTIONS = GRIB_lvl_typ = 200;
BOTH_VAR15_LEVELS = L0

BOTH_VAR16_NAME = TMP
FCST_VAR16_OPTIONS = GRIB_lvl_typ = 07;
BOTH_VAR16_LEVELS = L0

BOTH_VAR17_NAME = HGT
FCST_VAR17_OPTIONS = GRIB_lvl_typ = 07;
BOTH_VAR17_LEVELS = L0

BOTH_VAR18_NAME = TOZNE
FCST_VAR18_OPTIONS = GRIB_lvl_typ = 200;
BOTH_VAR18_LEVELS = L0

# list of forecast leads to process
LEAD_SEQ = 24

# description of data to be processed
# used in output file path
MODEL = GFS
OBTYPE = ANLYS

# location of grid_stat MET config file
GRID_STAT_CONFIG_FILE = {CONFIG_DIR}/GridStatConfig_sfc

GRID_STAT_OUTPUT_PREFIX = {MODEL}_{CURRENT_FCST_NAME}_vs_{OBTYPE}_{CURRENT_OBS_NAME}_{CURRENT_FCST_LEVEL}

# variables to describe format of forecast data
FCST_IS_PROB = false

# variables to describe format of observation data
#  none needed

[dir]
# location of configuration files used by MET applications
CONFIG_DIR={PARM_BASE}/use_cases/model_applications/medium_range

# input and output data directories
FCST_GRID_STAT_INPUT_DIR = {INPUT_BASE}/model_applications/medium_range/grid_to_grid/gfs/fcst
OBS_GRID_STAT_INPUT_DIR = {INPUT_BASE}/model_applications/medium_range/grid_to_grid/gfs/fcst
GRID_STAT_OUTPUT_DIR = {OUTPUT_BASE}/met_out/{MODEL}/sfc

[filename_templates]
# format of filenames
# FCST
FCST_GRID_STAT_INPUT_TEMPLATE = pgbf{lead?fmt=%HHH}.gfs.{init?fmt=%Y%m%d%H}

# ANLYS
OBS_GRID_STAT_INPUT_TEMPLATE = pgbf000.gfs.{valid?fmt=%Y%m%d%H}

GRID_STAT_OUTPUT_TEMPLATE = {valid?fmt=%Y%m%d%H%M}/grid_stat

MET Configuration

METplus sets environment variables based on the values in the METplus configuration file. These variables are referenced in the MET configuration file. YOU SHOULD NOT SET ANY OF THESE ENVIRONMENT VARIABLES YOURSELF! THEY WILL BE OVERWRITTEN BY METPLUS WHEN IT CALLS THE MET TOOLS! If there is a setting in the MET configuration file that is not controlled by an environment variable, you can add additional environment variables to be set only within the METplus environment using the [user_env_vars] section of the METplus configuration files. See the ‘User Defined Config’ section on the ‘System Configuration’ page of the METplus User’s Guide for more information.

////////////////////////////////////////////////////////////////////////////////
//
// Grid-Stat configuration file.
//
// For additional information, see the MET_BASE/config/README file.
//
////////////////////////////////////////////////////////////////////////////////

//
// Output model name to be written
//
model = "${MODEL}";

//
// Output description to be written
// May be set separately in each "obs.field" entry
//
desc = "NA";

//
// Output observation type to be written
//
obtype = "${OBTYPE}";

////////////////////////////////////////////////////////////////////////////////

//
// Verification grid
//
regrid = {
   to_grid    = "G002";   
   method     = BILIN;
   width      = 2;
   vld_thresh = 0.5;
   shape      = SQUARE;
}

////////////////////////////////////////////////////////////////////////////////

//
// May be set separately in each "field" entry
//
censor_thresh = [];
censor_val    = [];
cat_thresh    = [];
cnt_thresh    = [ NA ];
cnt_logic     = UNION;
wind_thresh   = [ NA ];
wind_logic    = UNION;
eclv_points   = 0.05;
nc_pairs_var_suffix = "";
nc_pairs_var_name = "";
rank_corr_flag   = FALSE;

//
// Forecast and observation fields to be verified
//
fcst = {
    field = [ ${FCST_FIELD} ];
    };

obs = {
    field = [ ${OBS_FIELD} ];
    };

////////////////////////////////////////////////////////////////////////////////

//
// Climatology data
//
climo_mean = {

   file_name = [];
   field     = [];

   regrid = {
      method     = BILIN;
      width      = 2;
      vld_thresh = 0.5;
      shape      = SQUARE;
   }

   time_interp_method = NEAREST;
   match_month        = TRUE;
   match_day          = TRUE;
   time_step          = 21600;
}

climo_stdev = climo_mean;
climo_stdev = {
   file_name = [];
}

climo_cdf_bins = 1;
write_cdf_bins = FALSE;

////////////////////////////////////////////////////////////////////////////////

//
// Verification masking regions
//
mask = {
   grid = [ "FULL" ];
   poly = [ "${INPUT_BASE}/model_applications/medium_range/poly/NHX.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/SHX.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/N60.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/S60.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/TRO.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/NPO.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/SPO.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/NAO.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/SAO.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/CONUS.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/CAM.nc",
            "${INPUT_BASE}/model_applications/medium_range/poly/NSA.nc" ];
}

////////////////////////////////////////////////////////////////////////////////

//
// Confidence interval settings
//
ci_alpha  = [ 0.05 ];

boot = {
   interval = PCTILE;
   rep_prop = 1.0;
   n_rep    = 0;
   rng      = "mt19937";
   seed     = "";
}

////////////////////////////////////////////////////////////////////////////////

//
// Data smoothing methods
//
interp = {
   field      = BOTH;
   vld_thresh = 1.0;
   shape      = SQUARE;

   type = [
      {
         method = NEAREST;
         width  = 1;
      }
   ];
}

////////////////////////////////////////////////////////////////////////////////

//
// Neighborhood methods
//
nbrhd = {
   field      = BOTH;
   width      = [ 1 ];
   cov_thresh = [ >=0.5 ];
   vld_thresh = 1.0;
   shape      = SQUARE;
}

////////////////////////////////////////////////////////////////////////////////

//
// Fourier decomposition
//
fourier = {
   wave_1d_beg = [];
   wave_1d_end = [];
}

////////////////////////////////////////////////////////////////////////////////

//
// Gradient statistics
// May be set separately in each "obs.field" entry
//
gradient = {
   dx = [ 1 ];
   dy = [ 1 ];
}

////////////////////////////////////////////////////////////////////////////////

//
// Statistical output types
//
output_flag = {
   fho    = NONE;
   ctc    = NONE;
   cts    = NONE;
   mctc   = NONE;
   mcts   = NONE;
   cnt    = NONE;
   sl1l2  = STAT;
   sal1l2 = NONE;
   vl1l2  = NONE;
   val1l2 = NONE;
   vcnt   = NONE;
   pct    = NONE;
   pstd   = NONE;
   pjc    = NONE;
   prc    = NONE;
   eclv   = NONE;
   nbrctc = NONE;
   nbrcts = NONE;
   nbrcnt = NONE;
   grad   = NONE;
}

//
// NetCDF matched pairs output file
//
nc_pairs_flag   = {
   latlon     = FALSE;
   raw        = FALSE;
   diff       = FALSE;
   climo      = FALSE;
   weight     = FALSE;
   nbrhd      = FALSE;
   fourier    = FALSE;
   gradient   = FALSE;
   apply_mask = FALSE;
}

////////////////////////////////////////////////////////////////////////////////

grid_weight_flag = COS_LAT;
tmp_dir          = "/tmp";
output_prefix    = "${OUTPUT_PREFIX}";
//version		 = "V9.0";

////////////////////////////////////////////////////////////////////////////////

Note the following variables are referenced in the MET configuration file.

  • ${MODEL} - Name of forecast input. Corresponds to MODEL in the METplus configuration file.

  • ${OBTYPE} - Name of observation input. Corresponds to OBTYPE in the METplus configuration file.

  • ${FCST_FIELD} - Formatted forecast field information. Generated from [FCST/BOTH]_VAR<n>_[NAME/LEVEL/THRESH/OPTIONS] in the METplus configuration file.

  • ${OBS_FIELD} - Formatted observation field information. Generated from [OBS/BOTH]_VAR<n>_[NAME/LEVEL/THRESH/OPTIONS] in the METplus configuration file.

  • ${REGRID_TO_GRID} - Grid to remap data. Corresponds to GRID_STAT_REGRID_TO_GRID in the METplus configuration file.

  • ${VERIF_MASK} - Optional verification mask file or list of files. Corresponds to GRID_STAT_VERIFICATION_MASK_TEMPLATE in the METplus configuration file.

  • ${CLIMO_FILE} - Optional path to climatology file. Corresponds to CLIMO_GRID_STAT_INPUT_[DIR/TEMPLATE] in the METplus configuration file.

  • ${NEIGHBORHOOD_SHAPE} - Shape of the neighborhood method applied. Corresponds to GRID_STAT_NEIGHBORHOOD_SHAPE in the METplus configuration file. Default value is 1 if not set.

  • ${NEIGHBORHOOD_WIDTH} - Width of the neighborhood method applied. Corresponds to GRID_STAT_NEIGHBORHOOD_WIDTH in the METplus configuration file. Default value is SQUARE if not set.

Running METplus

This use case can be run two ways:

  1. Passing in GridStat_fcstGFS_obsGFS_Sfc_MultiField.conf then a user-specific system configuration file:

    master_metplus.py -c /path/to/METplus/parm/use_cases/model_applications/medium_range/GridStat_fcstGFS_obsGFS_Sfc_MultiField.conf -c /path/to/user_system.conf
    
  2. Modifying the configurations in parm/metplus_config, then passing in GridStat_fcstGFS_obsGFS_Sfc_MultiField.conf:

    master_metplus.py -c /path/to/METplus/parm/use_cases/model_applications/medium_range/GridStat_fcstGFS_obsGFS_Sfc_MultiField.conf
    

The former method is recommended. Whether you add them to a user-specific configuration file or modify the metplus_config files, the following variables must be set correctly:

  • INPUT_BASE - Path to directory where sample data tarballs are unpacked (See Datasets section to obtain tarballs). This is not required to run METplus, but it is required to run the examples in parm/use_cases

  • OUTPUT_BASE - Path where METplus output will be written. This must be in a location where you have write permissions

  • MET_INSTALL_DIR - Path to location where MET is installed locally

Example User Configuration File:

[dir]
INPUT_BASE = /path/to/sample/input/data
OUTPUT_BASE = /path/to/output/dir
MET_INSTALL_DIR = /path/to/met-X.Y

NOTE: All of these items must be found under the [dir] section.

Expected Output

A successful run will output the following both to the screen and to the logfile:

INFO: METplus has successfully finished running.

Refer to the value set for OUTPUT_BASE to find where the output data was generated. Output for this use case will be found in gather_by_date/stat_analysis/grid2grid/sfc (relative to OUTPUT_BASE) and will contain the following files:

  • 00Z/GFS/GFS_20170613.stat

  • 06Z/GFS/GFS_20170613.stat

Keywords

sphinx_gallery_thumbnail_path = ‘_static/medium_range-GridStat_fcstGFS_obsGFS_Sfc_MultiField.png’

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery